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The loop space formulation of 3 + l canonical quantum gravity premises that 
all physical information is contained within the holonomy loop functionals. This 
assumption is the result of the reconstruction theorem for a principal fiber bundle 
on a base loop space. The gauge connection for interacting gauge theories is 
more appropriately and readily reconstructed on a path space as opposed to a 
loop space. We generalize the reconstruction theorem to a base path space. 
Employing a holonomy groupoid map and a path connection, we trivially construct 
an abstract Lie groupoid from which a principal fiber bundle and gauge connection 
can be derived as distinctive examples. The groupoid reconstruction theorem is 
valid on beth connected and nonconnected base manifolds, unlike the holonomy 
group reconstruction theorem, which can only be utilized for connected manifolds. 

1. I N T R O D U C T I O N  

Due to the intrinsic inadequacies o f  the perturbat ive p rog ram in con-  
structing a quantum theory of  gravity, nonpcrturbat ive p rograms  are currently 
being explored instead (Ashtekar,  1991). A significant deve lopment  in canoni-  
cal nonperturbat ive quantum gravity, which leads to a simplification o f  the 
classical constraint equations,  utilizes spinorial variables and is referred to 
as Ashtekar ' s  general  relativity (Ashtekar, 1986). A further progression o f  
this approach led Rovell i  and Smolin  (1988, 1990) to the loop representat ion 
of  quantum gravity. Using the loop representation, they demonst ra ted  that 
solutions to the Hamil tonian constraint in 3 + 1 canonical  quantum gravity 
exist if  the constraints are expressed in terms o f  loop representat ion variables.  
These  solutions are solutions in knot classes. 

Many  authors have applied the loop representat ion to various physical  
models ,  such as lattice gauge theory (Loll, 1992, 1993; Witten, 1989), Y a n g -  
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Mills gauge theory (Loll, 1991), linearized gravity (Ashtekar et al., 1991; 
Zegwaard, 1992, 1993), and quantum general relativity (Zegwaard, 1991; 
Bengtsson, 1989; Rayner, 1990; Gambini, 1991), to name but a few. However, 
as yet, the loop space approach to quantum gravity has not produced a 
physically meaningful quantum observable. 

In this paper we introduce a modification of the reconstruction theorem 
that allows us to propose an alternative to the Wilson loop (Wilson, 1974) 
which appears in conventional loop representations approaches. The alterna- 
five functional is gauge groupoid invariant (Brown, 1987) and exists on path 
space rather than loop space and has the form 

P exp A (1) 

In this paper we do not explicitly use (1) in a physical context, we 
merely illustrate mathematically that such a path-dependent holonomy can 
be used to reconstruct connections and principal fiber bundles. Path space is 
more general than loop space as it contains both paths and loops, the latter 
of which are a special case of the former. Moreover, in terms of a principal 
fiber bundle the structure group exists on loop space, while the bundle is 
defined on path space, which naturally has a Lie groupoid structure (Mayer, 
1990). A Lie groupoid fl  is equivalent to a principal fiber bundle except that 
it avoids an arbitrary choice of base point, a by-product of which is that the 
groupoid does not have a single group structure, but a bundle group structure 

= {Gx}x~x in which Gx is the group structure at x, where x is a point in 
the base manifold X (Mackenzie, 1989). The bundle group structure associated 
with Lie groupoids makes the reconstruction formalism we present in this 
paper particularly well suited to interacting gauge field theories which have 
a bundle group structure. Furthermore, because a base point need not be 
specified, the reconstruction theorem for groupoids can be defined on mani- 
folds which are not connected as well as connected manifolds (Brown, 1987). 

In this paper we show that a Lie groupoid f l  can be constructed from 
a holonomy groupoid map ~A- The holonomy groupoid map ~A maps ele- 
ments of IIX (the fundamental groupoid, introduced in Section 3) into the 
bundle group structure ~. Furthermore, a path connection (Mackenzie, 1987) 
can be defined which lifts paths from the base space IIX into the Lie groupoid 
l'l. This is similar to the reconstruction theorem (Anandan, 1983; Barrett, 
1991), except that loop space is generalized to path space and a principal 
fiber bundle is generalized to a Lie groupoid. The reconstruction theorem is 
often quoted as holding only for loop space. We show in this paper that this 
is not the case. In recent years several modifications of the reconstruction 
theorem have appeared. In Wilkins (1991) it was shown that the length of 
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the loops must be constrained in order to reconstruct a principal fiber bundle; 
in Hajac (1993) a simplification of Barrett's connection construction was 
proposed. The central modification we introduce in this paper is the employ- 
ment of groupoids over groups. The holonomy groupoid map ~a  Can naturally 
generate a Lie groupoid l l ,  due to its isomorphic nature, which can further 
be specialized to the principal fiber bundle fix. In contrast, the holonomy 
group map, due to its automorphic nature, generates only the fibers of the 
bundle. This is an important point, as it illustrates one of the fundamental 
differences between groupoids and groups applicable to the reconstruction 
theorem. Loop space has been used in simple gauge theories, such as the 
free Maxwell field (Ashtekar and Rovelli, 1992). However, it can readily be 
demonstrated that the path space formalism is essential in order to construct a 
physically sensible holonomy-dependent quantum field theory (Wood, 1996). 

2. LOOP SPACE 

A loop ~/is a smooth continuous mapping of the unit interval I = [0, 
1] into a (topological) space X such that ~/(0) = ~/(1). The collection of all 
loops in X with a defined base point * = ~/(0) = ~/(1) is called loop space 
and is denoted by fiX. The loop group, denoted by LG, is constructed from 
loop space f iX via a homotopy relation which quotients f iX into equivalence 
homotopy classes. Homotopy on loop space is usually taken to be a thin 
homotopy as in Lewandowski (1993). However, as pointed out in Caetano 
and Picken (1994), thin homotopy has particular disadvantages in constructing 
the connection for the reconstruction theorem. In particular, the pullback of 
the connection, from a smooth map (the loop) back into the bundle, must be 
generalized to the pullback of the connection on a continuous piecewise 
smooth map (the composite paths of the loop). In order to avoid this unneces- 
sary complication, Caetano and Picken (1994) define a weaker thin homotopy 
called intimate homotopy on path space. We shall utilize such homotopy in 
our reconstruction theorem in Section 3. 

The reconstruction theorem in Barrett (1991) relies on thin homotopy. 
Two loops ~/, ~/' ~ f iX are thinly homotopic if there exists a map 

h: I X I---> X (2) 

such that: 
(1) h(s, t) ~ I I X  for all s and t ~ L 
(2) h(0, t) = ~/(t) and h(1, t) = ~/'(t) for all t e 1. 

The concept of holonomy in the reconstruction theorem pertains to a 
holonomy group element. Geometrically the holonomy represents the parallel 
translation of a quantity along some curve 

~/= {~/(s): s E I ~/(0) = x and ~/(1) = y} (3) 
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If a connection is introduced onto a principal bundle, then the holonomy is 
a solution to the parallel translation differential equation (Nash and Sen, 1989) 

dn(x,  y) = A('y)H(x, y) (4) 

with the boundary condition H(x, x) equal to the identity element of the 
structure group G. The solution to (5) can be formally expressed as 

H = P e x p  .4 (5) 

where P denotes path ordering and results from the path ~/being decomposed 
into n smaller paths. The path ordering in the above equation takes the form 

H = I + ~ g" ~ A~ " "  A~l d'y~ . . . .  d~l ~' (6) 
n = l  J 

where ~/~i represents a smaller composite path of ~/~ for i an arbitrary element 
of n. The holonomy group, denoted by HG, is formed from the collection 
of holonomies H along closed paths (loops) % where ~/(0) = 7(1). The 
holonomy map Ha is a map 

HA: l-IX ---> G (7) 

with a composition map HA('y).Ha(~I') = HA(~I'.'Y) and inverse map HA 1(7) 
= HA(,I -~) defined. We are now in a position to define the reconstruction 
theorem for loop space (Barrett, 1991) in terms of such a map as follows. 

Consider a manifold M which is connected and paracompact and upon 
which a base point * is defined such that a loop space l lX may be constructed. 
Furthermore, assume there exists a map Ha: l'lX ---> G which satisfies the 
following three properties: 

(H1) Under the composition of loops, HA is a homomorphism 

HA(~I.'Y ') = HA('y')Ha(v) (8) 

(H2) For loops which differ by a reparametrization homomorphism dp: 
I --> [a, b] C L we have 

HA(~/) = HA(alp(V)) (9) 

(H3) Consider a finite-dimensional set of smooth loops {7 }: U -4 I~X, 
where U is an open subset of R n for any n. The composition of the map with 
this set 

Ha({T}): U ---) G (10) 

is smooth. 
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If the conditions (H1)-(H3) are satisfied, there will exist a principal 
bundle P = P(X, G), a point b �9 xr-I(*), and a connection F on P such that 
HA is the holonomy map of the bundle. 

3. PATH SPACE AND THE HOLONOMY GROUPOID 

In order to illustrate that the reconstruction theorem can be generalized 
to hold for path space, we must develop the path space analogy of the 
holonomy map HA. First we define path space formally. On a path connected 
space X with a base point *, the collection of all paths c: I ---> PX in X 
originating at the point * = c(0) is called path space and is denoted PX. The 
Serre fibration of path space forms the triple (PX, p, X), where p is the map 
p: PX --> X. A typical fiber of (PX, p, X) is the loop space fiX. 

In this paper we use a rank-one homotopy to construct the fundamental 
groupoid IIX from path space PX. We use the rank-one intimate path homo- 
topy as defined by Caetano and Picken (1994). Two paths c, c': I ---> PX are 
called intimate homotopic if there exists a map 

h: I • I----> X (11) 

such that: 
(1) h is smooth on I X L 
(2) The rank of the homotopy must be equal to or less than one. The 

rank of the homotopy is determined by calculating the rank of the homotopy 
Jacobian Dh, so 

rank(Dh(s,o) <-- 1 for all (s, t) �9 I • I (12) 

(3) There exists an e, where 0 < ~ < 1/2, such that 

0-----S<--•, 

1 - ~ - - < s < l ,  

0--<t--<~, 

1 - e < t < l ,  

h(s, 0 = c(t) 

h(s, 0 = c'(t) 

h(s, 0 = c(O) 

h(s, 0 = c(1) 

(13) 

When two paths are intimate homotopic equivalent, which we denote by c 
c', composition is then defined, implying that c(1) = c'(0). 

Thin homotopy quotients the loop space IIX into the loop group LG; 
similarly, path homotopy will quotient the path space PX into the path group- 
oid, often called the fundamental groupoid. The fundamental groupoid, 
denoted by IIX, is composed of objects which represent path homotopy 
equivalence classes. That is, if two paths are homotopic, then they belong 
to the same homotopy equivalence class. A groupoid is a more general object 
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than the group; for example, a groupoid with just one object is a group. In 
the Appendix the salient features of groupoids are reviewed. 

We have already introduced the holonomy on a open path in equation (5). 
The holonomy groupoid, denoted by ~k'~, is constructed from the collection of 
all such holonomies. In the next section we will show that the holonomy 
groupoid associated with a path connection A (to be defined in Section 4) 
is equal to the collection of endpoints of the "lifted" paths. That is, 

= {A(13(c)): c: I--~ [IX} (14) 

For 13 notation see Appendix. The holonomy groupoid map ~,t is a map 

~a: l-IX ---) ~ (15) 

such that groupoid composition is satisfied, that is, ~A(C).~A(C') = ~A(C.C') 
if C(I) = C'(0), and an inverse exists ~ l ( c )  = '~A(C-I). 

A fundamental property of the holonomy (Kobayashi and Nomizu, 1963) 
states that for any two distinct elements of the holonomy group, say H(x) 
and H(y), there will always exist an isomorphic "relation" between H(x) and 
H(y) as follows: 

~:  H(x) ~ H(y), where H(y) = 'rcH(x)'r~ l (16) 

where % is the parallel translation along the path c = {c(s): s ~ L c(0) = 
x and c(1) = y} (Bergery and Ikemakhen, 1993). Note that such an isomorphic 
map corresponds to an element of the holonomy groupoid. 

4. PATH CONNECTION 

A connection F in a principal fiber bundle P is a decomposition of the 
tangent space in P at a point u E P into a direct sum of horizontal and 
vertical tangent subspaces, 

Tu(e) = H,,(P) + V,,(P) (17) 

such that the right action R of the structure group G commutes with the 
horizontal subspace Hu, 

Hng,, = RgH,, for g e G (18) 

A 1-form can be associated with the connection F on a principal bundle. 
The I-form takes values in the Lie algebra of the structure group G. In this 
paper we use a path connection rather than a connection in order to avoid 
the necessity of "manually" lifting paths from X into the Lie groupoid 1~. A 
path connection has two major advantages over the infinitesimal connection. 
First, by definition it "automatically" lifts paths into f t .  Second, the lifted 
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paths are reparametrization invariant. The path connection was first introduced 
by Bishop and Crittenden (1964) and Singer and Thorpe (1967). It was first 
defined in the context of groupoids by Virsik (1971). In this section we 
shall summarize the results we need from the theory of  path connections 
(Mackenzie, 1987) in order to reproduce our generalization of the reconstruc- 
tion theorem. We use a C~ connection (Mackenzie, 1987) to form a 
holonomy groupoid map ~ a  for path space. A C| connection in a Lie 
groupoid f l  on a base space IIX is a map 

A: fIX --~ Pn~(f~) (19) 

where P ~ ( f l )  are the set of piecewise paths in f l  that start at an identity 
fix ~ of f l .  The path connection A satisfies the following properties: 

(1) The lift A of a path c into the bundle must start at an identity element 
fI~ [where x = c(0)] in f l .  That is, 

A(c)(0) = A(c)(0)) (20) 

The projection 13: f l  ---> IIX of a path A(c) in the Lie groupoid f l  onto the 
base space [IX is c. That is, 

~(A(c)) = c (21) 

(2) When the lifted path A(c) is reparametrized via the homeomorphism 
(b: I --> [a, b] C_ I to the path A((b(c)), the reparametrized path no-longer 
starts at the identity point ~ .  To rectify this, we introduce R, which translates 
the reparametrization of  the lift to the identity element in the same fiber 
over c(O), 

A(c(dp)) = RA-,(cx~o))((A(cXdp))) (22) 

where A-t(c)(dp(0)) is the projection of  A(c)(dp(0)) into the base and is equal 
to c((l))(0).  

Three important properties which arise from the above conditions on 
the path connection A are: (i) 

A(cx) = CA(x) (23) 

where cx is the constant path at x and A(x) is the point x lifted into the 
bundle; (ii) 

A(c(1 - t)) = A-l(c) ,  where c(l  - -  t )  ---- c - - l ( t )  for t e I 
(24) 

and (iii) 

A(cc') = A(c)A(c') (25) 
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Observe the similarity between these properties and the properties of the 
holonomy map. 

The path connection A is an element of the Lie groupoid f l  and as 
such inherits a differential structure from the Lie groupoid. This differential 
structure satisfies the following three conditions (Mackenzie, 1987). 

(i) If c is differentiable at to E L then A(c) is differentiable at to. 
(ii) For c, c': I ---> X we have 

dc dc' 
a t  (to) --- --~ (to) 

Then this implies that 

dA(c) 
( t o )  - - -  

dt 

(iii) For c, c', r I --~ X we have 

dc + de' de" 
~- (to) --~ (to) = ~ (to) 

which implies that 

dA(c) 
dt 

for some to ~ I (26) 

dl'l( c') 
dt 

(to) (27) 

for some to E I (28) 

dA(c') dA(c") 
(to) + ~ (to) - ~ (to) (29) 

5. R E C O N S T R U C T I O N  T H E O R E M  AND PATH SPACE 

The groupoid formalism of reconstruction presented in this paper has 
several advantages over other reconstruction theorems. Consider, for example, 
an interacting field theory in which the interacting particles 1, 2 . . . . .  n have 
associated group structures G1, G2 . . . . .  Gn. To reconstruct the associated 
bundle P(G1, G2 . . . . .  Gn) the conventional reconstruction theorem must 
be applied several times. In contrast, the groupoid reconstruction theorem need 
only be applied once, as it naturally accommodates the multiple symmetries 
associated with interacting field theories. 

Another advantage of the groupoid approach is that the base manifold 
need not be connected, as it is unnecessary to preassign a fixed base point. 
As a result, the groupoid method presented in this paper is simpler to utilize 
and has greater application. It is mathematically geared to describe theories 
involving multiple symmetries and furthermore holds for manifolds which 
are not connected. A detailed application of the groupoid within the context 
of interacting field theories is presented in Wood (1996). 

In this section we further illustrate how the conventional reconstruction 
theorem can be obtained as a special example of our more general reconstruc- 
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tion theorem. By selecting a fixed base point and restricting the base manifold 
to be connected, we can obtain the reconstruction theorem based on loop 
space. Furthermore, motivated by the utility of groupoids, we replace the 
loops by paths; the advantage in doing so is that we can utilize intimate 
homotopy introduced in Section 3 to automatically invest the holonomy group 
map with the property of piecewise smoothness, i.e., the property H3. 

Let us define a map ~a: 1-IX ---> ~d which maps between the fundamental 
groupoid I-IX (acting as the base manifold space) and the bundle group 
structure q3 over l-IX. First we check that the holonomy map is homomorphic 
under composition (that is, property HI). 

(H1) ~eA(C.C') = ~eA(C)~(C' ) .  

Proof. Groupoid composition denoted by c.c' is defined only if 13(c) = 
a(c') in IIX (for 13 and a notation see Appendix). From the definition of the 
holonomy groupoid (14), 

~a(C).~.A(C') = A(13(c)).A(13(c')) for all c, c': I --> X 

= A(13(c'.c)) (30) 

= ~a(c.c') (31) 

by (25). So property HI is satisfied. 

The path connection A(c) is reparametrization invariant by construction 
and so the holonomy groupoid ~ is also reparametrization invariant. We 
denote this property (H2), 

~ea(c -1) = ~ ( c )  

which is a consequence of H1 and reparametrization. 
(H3) The third property is a smoothness condition. For a smooth, finite- 

dimensional family of paths {c}: U---> IIX with U an open subset of R ~, for 
any n, the composition map ~a({c}): U ---> IIX ---> G is piecewise smooth. 
Unlike loop space, path space PX is piecewise smooth and so obviously 
~a({c}) is automatically piecewise smooth. In the reconstruction theorem 
for loop space (Barrett, 1991), where loop space is smooth, it is necessary 
to show that the holonomy map is piecewise smooth, rather than just smooth. 
This illustrates that the path formulation leads to a simplification of the 
reconstruction theorem. 

We utilize a special feature of the path connection A on the fundamental 
groupoid I-IX (Mackenzie, 1987), namely, there is only one unique path 
connection which acts on IIX. In such circumstances the holonomy groupoid 
~a reproduces the whole Lie groupoid f l ,  i.e., ~a: IIX ---> fl .  As such, a 
holonomy groupoid map on the fundamental groupoid entirely reconstructs 
the whole Lie groupoid. 
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5.1. Bundle Construction 

Given a holonomy groupoid map, we can automatically construct a Lie 
groupoid l'l. To reconstruct a principal fiber bundle I~ x from II ,  we must 
restrict the base manifold to be connected and must define a base point, say 
x. The principal fiber bundle l-Ix is a Lie groupoid with a fibered point over 
which the group structure is defined; hence we must constrain the holonomy 
groupoid map as follows: 

~alx: IIXIx ---> GIx (32) 

where IIXIx = IIiX(x, X), the set of automorphic maps at x called the 
fundamental group, and ~31x = G ,  the structure group at x. As such, ~A Ix 
= Ha is the holonomy group map at x. Such a restriction of the holonomy 
groupoid reconstruction is analogous to the conventional reconstruction theo- 
rem on loop space, except that we utilize intimate homotopy, which simplifies 
the theorem, as ~,~ I x is automatically piecewise smooth. Utilizing this feature, 
we now proceed to show that ~A I~ will reconstruct a principal fiber bundle 
in detail. 

The minimum information required to construct a principal bundle is 
the base manifold, in our case [IX, an open set on l-IX, say { Ui}, the transition 
functions tii(u), and the structure group Gx (which is isomorphic to the fiber 
space F for a principal bundle). We construct the bundle space 

E = U(Ui • Gx)l~ 
i 

where -- is an equivalence intimate homotopy relation on the bundle space. 
We will use the map ~,~ and its properties (H1)-(H3) to construct a 

bundle space E. To specify a principal fiber bundle, we require a base point 
defined on the base manifold, say x = c'(1). Then for g and g '  elements of 
the fiber above c'(1), the transition functions relating g to g '  are t,~(c'(l)). 
The transition functions t# can be represented by the map ~,Alx, explicitly 
t/j(c'(1)) = ~A I~(C'-I-C) �9 Consider Ui and Uy as open subsets of IIX. An 
intimate homotopy equivalence relation, denoted ~ ,  between (c, g) -- (c', 
g'), where (c, g) ~ Ui • Gx and (c', g ' )  E Uj • Gx, will exist iff 

c ~ c' and g = tij(c'(1))g' (33) 

Such a relation is an equivalence only if the properties of reflexivity, symme- 
try, and transitivity hold. 

Proof. Consider an arbitrary element of E, i.e., (c, g). First we show the 
reflexivity property (c, g) -- (c, g): Obviously, c ~ x, as 

g = t~i(c(1))g 

= ~ A  Ix(C-l.c)g 

= g (34) 
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then reflexivity holds. Because c and c are obviously in the same equivalence 
class [c], the only path which will satisfy the partial composition law of 
groupoids is [c-l]. 

The symmetry property (c, g) ~ (c', g'), then (c', g ')  ~ (c, g), where 
c, c'  E [c]: If (c, g) -- (c', g'), the equivalence relation requires that c ~ c' 
and g = ~ a  Ix(C'-l.c)g '. Therefore by (HI) and (H2) 

g' = ~A I ~ l(C'- l.c)g 

= ~ A  Ix(C- l.c')g (35) 

This completes the demonstration of  the symmetry property. 

Finally, we show that the transitivity property, (c, g) -- (c', g') and (c', 
g') ~ (c", g") implies (c, g) -- (c", g"), holds. 

Now (c, g) -- (c', g ')  implies c ~ c' and g = ~ a  I~(C'-I.c)g ', while (c', 
g') ~ (c", g") implies c' -- c" and g' = ~AIx(C"-I.c')g ". So 

gn : ~ A  [ x 1( c ' r -  I ' C ' ) ' ~ A  [ x I(  c '  -- l.c)g 

= ~a  I~(c"-l.c)g by (HI)  and (H2) (36) 

and thus transitivity holds. Thus we have shown that ~ is a homotopy 
equivalence relation quotienting IIX • G~ via the use of the map ~ a  restricted 
to ~AIx and its associated properties. In Section 5.3 we will show that the 
map ~AIx is the holonomy groupoid map. 

5.2. Connection Construction 

The bundle so far constructed inherents a differentiable structure from 
the Lie groupoid ~ associated with ~alx .  Define a map A Ix on the bundle 
l lx as follows: 

AI~: [IXI~ --> e ~ ( f l ) l x  = P~( l lx )  (37) 

We need to show that this map also inherits a differential structure and 
thus satisfies the properties (20)-(22) of a path connection. 

Proof. (1) To show that (20) and (21) are satisfied, we utilize the proper- 
ties of the a and 13 maps in the Appendix. Now c(0) = a(c) and so 

A(~x(c)) = a(A(c)) 

= A(c) (0 )  (38) 

In (21) note that while A lifts the path c, the 13 map projects the path. And 
so the A map cancels out the 13 map and hence the property follows. 
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(2) To show that (22) is satisfied, notice that A(c(~b)): [a, b] ---> c~, 
where Ca is a path in the bundle starting at the point a. But by the definition 
of the lift A(c) of a path c should start at A(c(0)). So the role of 
R A- 1(c)(r ) is to automatically redefine A(c(~b)) to A(c(0)). 

5.3. Determining the Holonomy 

We need to show that the map ~A Ix on a principal bundle l-Ix with path 
connection A I x is the holonomy group map, that is, an element of the holo- 
nomy group HG. In other words, we must show that 

~.A Ix(C) = HG(c) 

= A I x(13(c)), where 13(c) = ct(c) (39) 

Proof By definition, the holonomy groupoid consists of the endpoint 
values A(13(c)) of the lifted paths A(c). The point A(13(c)) in the bundle space 
is on the bundle over 13(c) e FIX and so is an element of the bundle structure 
group at 13(c), say g E Gf~(c). If further we restrict the bundle space over 13(c) 
to the point x, then ~31x(C) = AIx(13(c)) = g, where g ~ Gate)Ix is a point 
on the fiber on the principal fiber bundle. 

The holonomy groupoid map ~a:  IIX ----> q3 acts on the path c: I ---> 1-IX. 
The initial point of the path c is fixed to be the identity element of the bundle 
at ct(c). And so ~A(C) E ~ and refers to the path's c endpoint 13(c) lifted 
into the bundle space; thus ~alx(C) = A Ix(13(c)). 

6. CONCLUSION 

We have demonstrated that the reconstruction theorem can be generalized 
to reconstruct a Lie groupoid from which the special case of a principal fiber 
bundle can readily be derived. As such, we conclude that the conventional 
reconstruction theorem is a special case of the reconstruction theorem we 
have presented in this paper. The main advantages of the reconstruction 
theorem for paths presented in this paper over the reconstruction theorem 
for loops are that: 

(1) Interacting field theories are more appropriately modeled. 
(2) The base manifold need not necessarily be connected. 
(3) The reconstruction theorem for loops can be recast in such a fashion 

that its associated homotopy is piecewise smooth as opposed to 
just smooth. 
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A P P E N D I X  

There are many excellent reviews of groupoids; see, for example, Brown 
(1987), Mayer (1990), or Mackenzie (1987). In this Appendix the features 
of groupoids used in this paper are summarized. 

A groupoid f i  over a base X is a set (~, X) where ~ are the set of 
isomorphic maps. �9 are the "elements" of the groupoid f i .  In the literature 

is sometimes called the groupoid; however, in the present paper the group- 
oid will be denoted by [ l .  X is a set of objects. 

The groupoid has two projection maps r 13: ~ --> X called respectively 
the source and target maps, and one object inclusion map r X --> ~.  The main 
difference between groups and groupoids is that only a partial composition is 
defined for groupoids, that is, 

zj.z2: cI).~ ---> ~ for zl and z2 elements of  

The composition satisfies the following conditions: 

(1) ~ . ~  = {zt.z2 ~ alp.alp such that [~(zl) = a(z2)}. 
(2) If 13(z0 = o~(z2) and 13(z2) = a(z3); then zl.(z2.z3) = (Zl.Z2).z3. 
(3) r162 = [3(r is the identity element of  f i .  
(4) Each z ~ cI) has an inverse z - l  such that r - t )  = 13(z) and 13(z - t )  

= a(z) ,  and z.z -1 = r and z - l . z  = r 

From this general definition we now consider the following groupoids 
relevant to our path space formulation. 

Consider a groupoid f i ,  with fixed point x ~ X, that is, 1~ x = {z ~ ~ :  
such that a(z) = x}. Now { f i x } ~ x ,  which denotes the collection of all f ix 
as x varies over the base X, is a principal fiber bundle. The fix are the fibers 
which are isomorphic to the structure group. Thus a principal fiber bundle 
is actually a groupoid with a fibered point over which the group structure is 
defined. The bundle projection map, which is usually denoted by at, is the 
ot map. 

Consider a groupoid El with two fixed points x and y E X, that is, f i r  
= {z ~ cI): where a(z) = x and 13(z) = y}. One example of a groupoid with 
this structure is that associated with a path homotopy set, often called the 
fundamental groupoid fiX. 

The holonomy group, sometimes called the vertex group or isotropy 
group, can also be constructed from a groupoid f l ,  as follows: fi~ = {z E 
cI): such that a(z) = x = 13(z)} for x E X a fixed point. It is a groupoid with 
one element and hence has a group structure. 

It will be important in our construction of the reconstruction theorem 
to note that gl~ is more fundamental than fl~; f l  x can be constructed from 
flY as follows: 

f i x ( [ ~ ] )  = f i ~ ( [ c ] ) . f i ~ ( [ c ] - ~ )  = f i ~ ( [ c l ) . f ~ ( [ c ] )  
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where [~/] is an equivalence class o f  closed paths in path space I-IX and [c] 
denotes an equivalence class o f  open paths in IIX, with the inverse defined 
by c - l ( t )  = c(1 - t) for t e L The equivalence class [~/] is related to [c] by 
[ ~ ]  = [c.c-q = [ c ] . [ c - q .  
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